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RUNAWAY SEXUAL SELECTION WHEN FEMALE PREFERENCES ARE
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Abstract. We introduce models for the runaway coevolution of female mating preferences and male display traits.
The models generalize earlier results by allowing for direct natural selection on the preference, arbitrary forms of
mate choice, and fairly general assumptions about the underlying genetics. Results show that a runaway is less likely
when there is direct selection on the preference, but that it is still possible if there is a sufficiently large phenotypic
correlation between the female’s preference and the male’s trait among mated pairs. Comparison of three preference
functions introduced by Lande (1981) shows that open-ended preferences are particularly prone to a runaway, and
that absolute preferences require very large differences between females in their preferences. We analyze the causes
of the runaway seen in a model developed by Iwasa and Pomiankowski (1995).
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Why have females of some species evolved mating pref-
erences for males with extreme secondary sexual traits? A
mechanism that has been widely discussed was proposed by
Fisher (1958, p. 152) in a famous but obscure passage. In
modern terms, Fisher suggested that male display traits and
female preferences will naturally become genetically corre-
lated. As a result, further exaggeration of the male trait caused
by sexual selection will cause the preference itself to become
more exaggerated as a correlated selection response. Because
more exaggerated preferences in turn cause stronger sexual
selection on the male trait, the preference and trait could
coevolve in an explosive ‘‘runaway process.’’ Fisher’s verbal
logic was verified much later by genetic models (O’Donald
1980; Lande 1981; Kirkpatrick 1982).

Theoretical work since Fisher has revealed two key points
that he did not discuss (reviewed in Kirkpatrick and Ryan
1991; Andersson 1994). The first regards the outcome of the
coevolution between the preference and male trait. Genetic
models show that one possibility is that they will arrive at a
stable equilibrium point. However, if the genetic covariance
between the preference and trait is large enough, the equi-
librium becomes unstable. In a landmark paper, Lande (1981)
discovered that in such a case, a rapid burst of evolution will
follow in which the trait and preference evolve at an expo-
nentially increasing rate until genetic variation is exhausted
or the intensity of natural selection becomes very severe.
Lande identified this unstable outcome with what Fisher de-
scribed verbally as the runaway process. Others have used
runaway to indicate whether evolution of the male trait leads
to exaggerated female preference at equilibrium, regardless
of the equilibrium’s stability, whereas Fisher did not make
that distinction. Generally, however, the term runaway now
refers to the outcome discovered by Lande in which a pop-
ulation evolves rapidly away from an unstable equilibrium.

A second development since Fisher is the appreciation of
other processes that can establish extreme mating preferenc-
es. One important mechanism is natural selection acting di-
rectly on the genes underlying a preference (Lande 1981;
Kirkpatrick 1982; Bulmer 1989). Direct selection on pref-
erence genes happens for many reasons. For example, natural

selection acting on the pleiotropic effects of genes that affect
mating preferences will also cause those genes to fall under
direct selection (Kirkpatrick 1982; 1985). Male parental care
generates direct selection on preferences because a female’s
mate choice affects her fecundity. Search costs may also lead
to direct selection on preference (Kirkpatrick 1985; Pomian-
kowski 1987). These considerations have led to the sugges-
tion that some kind of direct selection may be acting on
virtually all preference genes (Kirkpatrick and Ryan 1991;
Ryan 1997).

Despite the large amount of work that has been done on
the runaway process and on direct selection of preference
genes, we do not know how the two mechanisms interact.
We do know that if direct natural selection favors a particular
value of the preference, then there is an equilibrium in which
the preference lies at its favored value. At this equilibrium,
the male trait takes a value that is a compromise between the
forces of natural and sexual selection acting on the male trait
(Lande 1981, eq. (10); Kirkpatrick 1985, eq. (12)). But is
this equilibrium always stable, or can an unstable runaway
ensue if the genetic covariance becomes sufficiently large?
Intuitively, we might suspect that direct selection on the pref-
erence will make the equilibrium more stable and therefore
make a runaway less likely. That conclusion has not, how-
ever, been studied with a genetic model.

Another reason for revisiting the runaway is to learn more
about the conditions under which it will occur even when
there is no direct selection on the preference. Lande’s (1981)
conclusions were developed in two stages. The first assumes
that females choose males using one of three preference rules,
and that the additive genetic and phenotypic values for the
preference and trait are normally distributed. He then found
the conditions for a runaway given known values for the
genetic variances and covariance. A question we consider
here is when will a runaway occur if the characters are not
normally distributed and females choose their mates by any
kind of process. In the second stage of Lande’s analysis, he
made detailed assumptions about the genes underlying the
preference and trait. With those, he found that a runaway
occurs when mutation rates at the preference loci are suffi-
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ciently large. The genetic assumptions used in this second
phase of the analysis, however, have been criticized as bi-
ologically unrealistic (Turelli 1988). This paper investigates
when a runaway is possible under more general and perhaps
realistic assumptions about the genetics.

We begin by developing a model of the runaway that allows
for direct selection on the preference and that makes fairly
general genetical and behavioral assumptions. Following
Lande’s approach, this section assumes that the critical ge-
netic covariance between the preference and trait has a known
value. Analysis shows that direct selection of preference
genes does indeed stabilize the equilibrium, but that a run-
away can still occur if the genetic covariance is big enough.
Next, we use recent theoretical results that allow the genetic
covariance to be calculated to determine when the runaway
will occur under a broad range of mating behaviors. We then
return to the three preference rules introduced by Lande
(1981) to find when a runaway will occur under those con-
ditions when there is direct selection on the preference. The
analytic results are checked by simulations. Finally, we use
these results to study the runaway in a model of cycling
sexual selection introduced by Iwasa and Pomiankowski
(1995).

THE MODEL

Consider a species with two sex-limited characters, a male
trait with mean t̄ and a female preference with mean p̄. The
female preference can be any character that influences her
choice of mate. We make no assumptions about how mate
choice works or what the mating system is, only that pairing
is controlled by the females. Females that differ in their pref-
erence differ in the likelihood that they will mate with a male
with a given trait value. Thus, for our purposes a ‘‘prefer-
ence’’ is any phenotype expressed by females that affects the
probabilities that they will mate with different types of males.
Direct selection on preference genes causes a female’s pref-
erence to affect her survival and fecundity. For simplicity we
assume that selection on preferences is not affected by the
distribution of the male trait. The model could be easily ex-
tended to those situations, however, and we expect that the
qualitative conclusions will not be changed. We take the
convention that the preference is measured in such a way
that larger values of p̄ favor larger values of the male trait.

Genetic variation in the preference and trait is caused by
genes with additive effects (i.e., no dominance or epistasis).
The genes are autosomal, and there can be either haploid or
diploid inheritance. There can be any number of loci, and no
restriction is made on the distribution of allelic effects or the
linkage relations between the loci. The genetic covariance
between the trait and preference is denoted Gtp. This co-
variance arises naturally from the nonrandom mating between
females with extreme preferences and males with extreme
traits. Nonrandom mating produces linkage disequilibrium
between loci affecting the trait and those affecting the pref-
erence; the trait-preference covariance produced this way is
independent of the genetic linkage between the loci (Lande
1981; Kirkpatrick 1982; Barton and Turelli 1991; Kirkpatrick
and Barton 1997). At this point we will simply view the

genetic covariance as a known quantity; later in the paper
we will calculate its size.

When the population is near an equilibrium, the forces of
directional selection acting on the male trait and female pref-
erence are weak. In that case, the changes in their means
caused by one generation of selection are

1 1
Dt 5 G b (t, p̄) 1 G b ( p̄), (1a)¯ ¯t t tp p2 2

1 1
Dp̄ 5 G b ( p̄) 1 G b (t, p̄). (1b)¯p p tp t2 2

Here Gt and Gp are the additive genetic variances and bt and
bp are the directional selection gradients for the male trait
and female preference, respectively. The bs represent the
selective force restoring the population to the equilibrium,
and are defined as the regression of lifetime relative fitness
regressed onto the character value (see Lande and Arnold
1983). At equilibrium the bs are equal to zero (assuming the
preference and trait are not perfectly correlated). The selec-
tion gradient on the male trait is a function of the mean
preference p̄ as well as the mean trait t̄ because male fitness
depends in part on sexual selection caused by the preference.
The factors of 1/2 are present due to the sex-limited expres-
sion of both characters.

Equations (1) hold for any intensity of selection if the
additive genetic values for the trait and preference are nor-
mally distributed in the population. They hold much more
generally, however, as long as directional selection is weak
and the genes affecting the characters have additive effects
(T. Johnson and M. Kirkpatrick, unpubl. data). Because we
are interested in how the population evolves near an equi-
librium, directional selection is necessarily weak and so the
following results apply whenever the more general genetic
assumptions outlined above are met. Without losing any gen-
erality, it is convenient to choose a scale of measurement
that sets the equilibrium values of the male trait and female
preference equal to zero.

The Runaway Condition

In a runaway process, a population that is close to the
equilibrium will move farther away from it. We can determine
when that will happen with a linear stability analysis. Lin-
earizing the selection gradients around the equilibrium using
a Taylor expansion gives:

1 1
Dt 5 2 G k t 1 (G k 2 G k )p̄¯ ¯t t t tp tp p2 2

2 21 terms of order t , p̄ , (2a)¯

1 1
Dp̄ 5 2 G k t 1 (G k 2 G k )p̄¯tp t tp tp p p2 2

2 21 terms of order t , p̄ , (2b)¯

where

d d
k 5 2 b (t, p̄), k 5 b (t, p̄),¯ ¯t t tp tdt dp̄¯

d
k 5 2 b ( p̄), (3)p pdp̄
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and all the derivatives are evaluated at the equilibrium t̄ 5
p̄ 5 0. The sizes of kt and kp measure the strength of natural
and sexual selection restoring the trait and preference to their
equilibrium values. Stabilizing selection on the male trait and
female preference implies kt and kp are both positive: stronger
natural selection occurs against trait or preference values fur-
ther from the optimum. The value of ktp measures how rapidly
a change in the mean preference increases the strength of
sexual selection acting on a male trait and is thus assumed
to be positive. For there to be a stable equilibrium there must
be net stabilizing selection on the preference and/or male
trait.

Equations (2) can be used to form a stability matrix whose
leading eigenvalue is:

1
l 5 [2G k 1 G k 2 G kt t tp tp p p4

2 21 Ï(G k 2 G k 1 G k ) 2 4(G G 2 G )k k ].t t tp tp p p t p tp t p

(4)

The eigenvalue can be real or complex. When it is real, sta-
bility is implied whenever 22 , l , 0. When it is complex,
stability is implied whenever z1 1 lz , 1. If the stabilizing
component of selection acting on the preference and male
trait is weak, Equation (4) can be simplified by neglecting
the second term under the square root sign. Such an approx-
imation is valid whenever (Gtpktp 2 Gtkt 2 Gpkp)2 k 4(GtGp
2 G2

tp)ktkp, and based on our simulation results, seems to
work reasonably well even when this inequality is not met.
With this approximation, the equilibrium is unstable, and
runaway occurs, when:

G k 1 G kt t p p
G $ . (5)tp ktp

This result shows that a runaway is possible even in the
presence of direct selection acting on the preference. A run-
away is easy to trigger (i.e., a smaller genetic covariance Gtp
is required) when stabilizing selection on the male trait and
female preference are weak (kt and kp are small) and when
small changes in the preference have a large effect on the
force of sexual selection experienced by males (ktp is large).
When there is no direct selection on the preference, then kp
5 0 and Equation (5) is identical to the condition obtained
by Lande (1981, eq. (12) with kt/ktp 5 a 1 e). Thus, his
conclusions about the runaway when preferences are selec-
tively neutral do not depend on his assumption that breeding
values for the preference and trait are normally distributed.

These conclusions hold regardless of how the genetic co-
variance between the preference and trait is maintained. The
most interesting (and perhaps common) way that the co-
variance develops is from the linkage disequilibrium that
naturally develops between preferences and male traits. The
next section considers this possibility.

Evolution of the Covariance

We now ask when a runaway will occur if the key genetic
covariance Gtp is caused entirely by the linkage disequilib-
rium that naturally develops between trait and preference loci.
Kirkpatrick and Barton (1997, eq. (10)) found the genetic

correlation between a preference and male trait under the
general assumptions about genetics and behavior that we have
made in this paper. From that result it follows immediately
that the genetic covariance Gtp is

G G1 t p
G 5 r , (6)tp tp2 s st p

where st and sp are the phenotypic standard deviations for
the male trait and female preference respectively. The pa-
rameter rtp is the phenotypic correlation between the pref-
erence in females and trait value in males among breeding
pairs. This correlation can in principle be measured empir-
ically. It can also be calculated if one assumes particular rules
for how females choose males, as we will do below. The
approximations leading to Equation (6) assume the correla-
tion is weak (rtp K 1), implying that individual females do
not vary greatly in their preferences.

Equation (6) can now be substituted into Equation (5) to
give an expression for runaway in terms of the phenotypic
correlation between the preference in females and trait value
in males among breeding pairs:

2s s (G k 1 G k )t p t t p p
r $ . (7)tp k G Gtp t p

This is a reasonably general result for the conditions under
which a runaway will happen. It allows for any form of female
choice and direct selection on the preference. It should also
hold regardless of what maintains genetic variation in the
preference and trait so long as those forces are weak. The
main simplifying assumptions leading to Equation (7) are
that the genes have additive effects, that the strength of se-
lection returning the population to the equilibrium is weak,
and that females do not differ greatly in their preferences.

Our analysis has focussed on the stability of the mean
preference and trait. In principle, an analysis of the full ge-
netic system (including all the allele frequencies and linkage
disequilibria) could reveal cases where our results suggest
an equilibrium is stable when in fact it is unstable. That is,
we have found criteria that are sufficient but perhaps not
necessary for instability. The simulation results presented
below, however, suggest that the the criteria given here are
in fact quite accurate.

Runaway with Specific Preference Functions

Lande (1981) analyzed the runaway assuming that females
choose males according to one of three specific preference
rules. In this section we calculate the correlation rtp under
these preference rules and combine the results with those
from the last section to determine when runaway occurs with
direct selection.

Females exhibiting psychophysical preference have open-
ended preferences for males with more extreme trait values.
Specifically, a female with preference value p has a prefer-
ence for a male with trait value t that is proportional to exp{t
p}. Females with absolute preference most prefer males that
match their pre-existing search image, and their preference
falls off symmetrically on either side of this most preferred
male. Specifically, a female’s preference is proportional to
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TABLE 1. The phenotypic correlation rtp of the preference in females
and the trait in males across mating pairs for Lande’s (1981) three
preference functions. The genetic covariance Gtp , obtained from Equa-
tion (6), is also given. These are weak selection approximations that
assume .2 2s K nt

Psychophysical Absolute Relative

rtp

s st p

2 2Ï1 1 s st p

s st p

4 2 2Ïn 1 s st p

s st p

4 2 2Ïn 1 s st p

Gtp

G Gt p

2 22Ï1 1 s st p

G Gt p

4 2 22Ïn 1 s st p

G Gt p

4 2 22Ïn 1 s st p

TABLE 2. The values for the ks that determine stability of the equi-
librium for each of the three preference functions (see eq. (3)). These
are weak selection approximations that assume and2 2s K vp p

.2 2 2s K v , nt t

k t k tp kp

Psychophysical
1

2v t

1
1

2vp

Absolute
2 2n 1 v t

2 2n v t

1
2n

1
2vp

Relative
1

2v t

1
2n

1
2vp

exp{2(t 2 p)2/2n2}, where p is the trait value she most prefers
and n measures the range of trait values around p that a female
will readily accept. Females exhibiting relative preference
base their preference on the distribution of males in the pop-
ulation. A female with preference p most prefers males whose
trait value t is p above the average male. Her preference is
proportional to exp{2[t 2 (p 1 t̄*)]2/2n2}, where t̄* is the
mean trait among males that are available to mate and n again
reflects the range of males around her most preferred type
that a female will readily accept.

For all three preference functions, the frequency of females
with preference p mating with males with trait value t is
bivariate normally distributed, and the correlation coefficient
for this distribution is readily obtained. This coefficient is
the correlation between the male trait and the female pref-
erence among mated pairs, rtp. Table 1 gives its value for
the three preference functions as well as the genetic covari-
ances that they produce.

To determine when a runaway will occur, we also need
the ks that appear in Equation (7). To do that, we need to
make an assumption about the form of natural selection.
Lande (1981) assumed there is stabilizing natural selection
on the male trait that takes the form of a gaussian function
with variance . To that we will add the assumption that2vt
the fitness function acting on the preference in females is
proportional to a gaussian function with variance . Thus2vp
the intensity of stabilizing natural selection on the female
preference and male trait becomes stronger as the values of

and decrease, respectively. With these assumptions and2 2v vp t
results in Lande (1981), the selection gradients bt and bp can
be calculated directly, and from them the ks. These results
are given in Table 2. (These results can be generalized to
fitness functions that are not gaussian. The s that appear2vp
in the following expressions are replaced by 21/{(d2/dp2)
ln[wp(p)]}, where wp is the fitness function for the preference
and the derivative is evaluated at the preference equilibrium.
The s are replaced by the analogous expression for the2vt
male trait.)

The conditions for runaway under the three preference
rules are found by substituting the ks into equation (6), which
gives

Psychophysical:

G1 G pt0 , G G 2 2 (8a)t p 2 22 v vt p

Absolute:

2 2G G GG (v 1 v )t p pt t0 , 2 2 (8b)
4 2 2 22v v v vt p

Relative:

G G GGt p pt0 , 2 2 (8c)
4 2 22v v vt p

These results show that a runaway is possible with all three
preference functions even when there is direct selection on
the preference. As one would anticipate, however, runaway
becomes increasingly less likely as the strength of stabilizing
natural selection on the preference and male trait become
stronger (that is, and become smaller). A runaway is2 2v vp t
possible if the genetic variances of the trait and preference
are sufficiently large. This is the fundamental explanation for
Lande’s (1981) finding that a runaway will occur if the mu-
tation rate at preference loci is sufficiently large.

With psychophysical and relative preferences, Equations
(8a) and (8c) show that as long as there is genetic variation
for the preference and trait a runaway will be triggered if
natural selection on the characters is sufficiently weak. The
propensity of psychophysical preferences to trigger runaways
was noted by Lande (1981). A runaway is much more difficult
to initiate, however, when preferences are absolute. The rea-
son is that absolute preferences exert stabilizing selection on
the male trait.

Even in the absence of any natural selection on the pref-
erence or male trait, Equation (8b) shows that absolute pref-
erences require Gp . 2n2 for a runaway to happen. That
implies that differences among females in the males that they
most prefer are much larger than the range of males that any
single female will find acceptable. Although possible, it
seems on biological grounds that this is probably very rarely
the case. The conditions only become less plausible when
the stabilizing effects of natural selection on the male trait
and preference are included in the model. In short, a runaway
may be implausible in species that have absolute preferences.

Simulations

To test the accuracy of our analytic approximations, we
compared them with results from a simulation model. This
simulation is based on the ‘‘infinitesimal model’’ of inher-
itance (Fisher 1918; Bulmer 1971). Genetic variation in the
preference and male trait is assumed to be caused by a large
(effectively infinite) number of unlinked loci with equivalent
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TABLE 3. Comparison of analytic approximations and simulation re-
sults for the conditions leading to a runaway. The simulation is based
on the infinitesimal model of inheritance, as described in the text. The
genetic variances for the male trait and preference, Gt and Gp, were
determined by simulation and account for linkage and Hardy-Weinberg
disequilibria. Females have psychophysical preferences (and so ktp 5
1). The analytic approximation for the genetic covariance, Gtp, is based
on Equation (6). Approximations for the minimum strength of stabi-
lizing selection on the preference (threshold kp) that will prevent a
runaway, kp (1) and kp (2), are based on Equations (4) and (5), re-
spectively, using the analytic approximation for the genetic covariance.
In all simulations we assume that the heritability of the male trait and
female preference are both equal to 0.5. An asterisk indicates that the
equilibrium is predicted to be stable for all values of kp.

Parameters

kt Gt Gp

Analytic approximations

Gtp kp (1) kp (2)

Simulation results

Gtp kp (3)

0.01
0.01
0.01
0.01
0.01

1.26
1.19
1.13
1.08
1.04

0.108
0.085
0.063
0.041
0.020

0.055
0.043
0.031
0.020
0.010

0.40
0.37
0.32
0.24

*

0.39
0.36
0.32
0.24

*

0.061
0.046
0.033
0.021
0.010

0.43
0.38
0.33
0.24

*
0.01
0.01
0.01
0.01

0.96
0.68
0.43
0.21

0.107
0.105
0.103
0.102

0.043
0.032
0.021
0.010

0.32
0.24
0.16

*

0.31
0.24
0.16
0.08

0.046
0.033
0.021
0.010

0.33
0.25
0.16
0.08

0.02
0.02
0.02
0.02
0.02

1.25
1.18
1.12
1.07
1.03

0.109
0.086
0.063
0.042
0.020

0.055
0.043
0.031
0.021
0.010

0.28
0.23
0.14

*
*

0.27
0.22
0.14

*
*

0.061
0.046
0.033
0.021
0.010

0.30
0.24
0.15

*
*

0.02
0.02
0.02
0.02

0.95
0.68
0.43
0.21

0.107
0.105
0.103
0.102

0.043
0.031
0.020
0.010

0.23
0.17
0.12

*

0.22
0.17
0.12
0.06

0.046
0.033
0.021
0.010

0.24
0.18
0.12
0.06

effects. Exact recursion equations can be derived that account
for the evolution of the genetic variances for the preference
and male trait as well as the genetic covariance between them
(Kirkpatrick 1996).

The simulation results presented in Table 3 are chosen to
make two comparisons. First, the analytic approximation for
the genetic covariance Gtp between the female preference and
male trait from Equation (6) shows good agreement with the
simulation results. The analytic approximation improves as
the genetic variance in the male trait or female preference
declines. Second, the analytic approximation for Gtp is then
used with Equations (4) and (5) to find the minimum strength
of stabilizing selection (threshold kp) on the preference need-
ed to prevent a runaway. The predicted threshold kp is com-
pared to the value obtained from the simulation. These pre-
dictions are more accurate when the error in the covariance
is small and when selection on the male trait is weak. The
third result from the simulations, for which data are not
shown, is that for parameter combinations that give a thresh-
old kp close to zero, the analytical approximation does less
well. This is because the error in the estimation of the co-
variance becomes large relative to the absolute value of the
threshold kp. From these results, we conclude that the analytic
approximations are performing well throughout most of the
region of the parameter space where they are predicted to do
well (weak selection and small genetic covariance).

Runaway in the Iwasa-Pomiankowski Model

Iwasa and Pomiankowski (1995) introduced a model of the
runaway that includes biased mutation that exerts a direc-
tional force on the mean male trait. The model is interesting
because it shows unusual dynamics. Under some conditions,
a population will rapidly runaway from the equilibrium, then
slowly return. This cycle repeats indefinitely.

A major conclusion of the paper is that biased mutation
can stabilize an equilibrium that would otherwise show run-
away. In this section we show that the underlying reason for
their finding has nothing to do with biased mutation per se.
Instead, it depends on the strength of stabilizing selection,
in accord with the results developed above. Biased mutation
shifts the location of the equilibrium, which in turn changes
the intensity of stabilizing natural selection acting on the
preference and male trait. It is the change in stabilizing se-
lection that affects the stability of the equilibrium.

First we will show that the analysis developed above cor-
rectly predicts the stability properties of the Iwasa-Pomian-
kowski model. They assumed a particular natural selection
fitness function in which the male trait is selectively neutral
at its viability optimum but is very strongly selected when
it deviates from the optimum:

4w(t) 5 exp{2ct } (9)

They further assumed psychophysical preferences, weak se-
lection on the preferences, and small phenotypic variances.
The per generation change in the mean trait caused by mu-
tational bias is denoted u.

Using their assumptions, we can determine the equilibrium
and then calculate the ks and the genetic covariance Gtp at
the equilibrium. Substituting those values into Equation (5)
gives the conditions required for the equilibrium to be un-
stable. Runaway occurs when the mutational bias is less than
a critical threshold:

3G1 p
u , . (10)

2!12v 6cp

This is exactly Equation (6) of Iwasa and Pomiankowski
(1995) (albeit with two trivial changes in notation).

Two conclusions follow. First, this exercise serves as a
check on our work, as we can rederive a previous result using
our framework. Second, it reveals the underlying cause of
why biased mutation affects stability in the Iwasa-Pomian-
kowski model. Equation (10) was found by considering only
the strength of stabilizing selection on the preference and
trait at the equilibrium. Biased mutation exerts a directional
force on the male trait, which changes its equilibrium value.
It also generates indirect selection on the preference, chang-
ing the preference equilibrium, which in turn affects the shape
of the sexual fitness function for males. The net result in
some cases is to move the equilibrium from a point where
stabilizing selection prevents a runaway to one where it does
not. These effects are illustrated in Figure 1.

Under the fitness function of Equation (9), increasing mu-
tational bias will inhibit a runaway. However, the opposite
result can occur: biased mutation can actually trigger a run-
away. With a male fitness function that has a different shape
than Equation (9), increasing mutation can shift the equilib-
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FIG. 1. The fitness function for males (including both natural and
sexual selection) when the mean male trait is at equilibrium in the
model of Iwasa and Pomiankowski (1995). (Top) The fitness func-
tion when there is no biased mutation, u 5 0. The arrow shows the
location of the unstable equilibrium. Note that the fitness function
is neutral (flat) at the equilibrium. (Bottom) The fitness function
with biased mutation, u 5 0.000108. The arrow shows the position
of the stable equilibrium. Note that the fitness function is stabilizing
(concave downward) at the equilibrium. Other parameter values are
taken from Iwasa and Pomiankowski (1995, fig. 1): kp 5 0.002
(from b 5 0.001), c 5 0.05, Gt 5 0.5, Gp 5 0.5. Stability was
determined by finding the equilibrium and its corresponding ei-
genvalues numerically.

FIG. 2. A male fitness function that produces a stable equilibrium
when there is no mutation bias but that causes a runaway when
mutation bias is introduced. The male trait viability function is w(t)
5 exp{20.07t2 1 2.5t4 2 1000t8} in place of Equation (9). (Top)
The fitness function with no biased mutation, u 5 0. The arrow
shows the location of the stable equilibrium. (Bottom) The fitness
function with biased mutation, u 5 0.0061. Arrow indicates the
unstable equilibrium; the fitness function is less strongly stabilizing
here than at the equilibrium in the top panel. Other parameter values
are kp 5 0.02, Gt 5 0.01, and Gp 5 0.01. Stability was determined
by finding the equilibrium and its corresponding eigenvalues nu-
merically.

rium from a point where stabilizing selection is strong to one
where it is weak. Under some situations, this shift will cause
stabilizing selection to become so weak that a runaway be-
gins. An example is shown in Figure 2. Although the example
is contrived, it shows that we cannot say whether biased
mutation (or other evolutionary forces) will generally sta-
bilize or destabilize an equilibrium.

The point is that the role of mutation bias, and by extention
other evolutionary forces that influence the runaway, can be
understood terms of stabilizing selection using the framework
developed here. Mutation bias can either stabilize or desta-
bilize an equilibrium, depending on the shape of the fitness
function.

DISCUSSION

An unstable runaway in which female mating preferences
and a male trait rapidly coevolve away from an equilibrium
is possible even when stabilizing natural selection acts on
the preference. Direct selection acting on female preference
makes a runaway less likely. When there is no pleiotropy
between the preference and trait, conditions for a runaway
depend on a relatively small number of factors: the strength
of stabilizing selection on the preference and trait, the phe-
notypic and additive genetic variances for the trait and pref-
erence, the phenotypic correlation between the preference and
trait among mating pairs, and the rate at which an increase
in the preference intensifies sexual selection on males (see

Eq. (7)). Many other variables, such as the number of loci
and their linkage, do not enter.

These results corroborate and extend those of Lande
(1981), who first discovered that a preference-trait equilib-
rium can become unstable. The main generalizations we have
made are to allow for any form of female preference, natural
selection acting on the preferences, and more general genetic
assumptions. Our results agree with his for the cases where
there is no selection on the preference, and females choose
males according to one of his three preference rules.

Some preference functions make a runaway much more
likely than others (Lande 1981). Psychophysical (or open-
ended) preferences are the most prone for three reasons. First,
they generate a strong correlation between mating pairs (large
rtp). Second, they exert strong sexual selection whose inten-
sity accelerates rapidly with small changes in the mean pref-
erence (large ktp). Third, variation among females with psy-
chophysical preferences generates disruptive selection on the
male trait which further destabilizes the equilibrium. Abso-
lute preferences, in which each female has a fixed search
image of her most preferred male, are much less likely to
begin a runaway. Even when natural selection on both the
preference and the male trait is very weak, a runaway with
absolute preferences requires very large differences between
females in the males they most prefer.

Direct natural selection on mating preferences can arise
many ways. Mating preference genes, like other genes, are
likely to have pleiotropic effects that are subject to selection.
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A second source of selection on preferences appears when
females receive a direct benefit (or cost) from mating with
certain males. Examples include when males provide parental
care or when diseases are transmitted between mates. A third
type of direct selection on preferences is caused by female
search costs (Kirkpatrick 1985; Pomiankowski 1987). Search
costs might favor females with no preference or alternatively
might favor females with extreme preferences if being sen-
sitive to certain signals makes it easier to locate males. Fe-
males might, for example, find a male more easily in an
environment rich in distracting stimuli if they are strongly
tuned to conspicuous colors and sounds. These examples sug-
gest that some form of direct selection acts on most if not
all female mating preferences (Kirkpatrick 1985; Kirkpatrick
and Ryan 1991). Support for this view comes from selection
experiments in which mating preferences frequently evolve
as a side effect of selection directed at other traits (for review
see Rice & Hostert 1993).

Direct selection of preferences has two important effects
on the outcome of sexual selection. First, it determines where
the equilibrium for the female mating preference lies (Lande
1981; Kirkpatrick 1982; Bulmer 1989). In many cases, direct
selection will favor preference for extreme males. When that
happens, the equilibrium for the preference is determined by
natural selection, and the male trait evolves to a compromise
between what the preferences favor and what maximizes sur-
vivorship (Kirkpatrick 1985). This may be a very common
way in which strong preferences and extreme male displays
evolve. Some have argued that Fisherian runaway does not
operate in models with direct selection on female preference
because the equilibrium is such that the cost of preference
is minimized (Iwasa et al. 1991; Pomiankowski et al. 1991;
Andersson and Iwasa 1996, Higashi et al. 1999). However,
this argument confuses the position of the equilibrium with
its stability, and it is the latter that is of interest with respect
to Fisherian runaway (see introduction). That is, the equilib-
rium indeed minimizes female costs but that equilibrium can
be unstable, resulting in a runaway.

A second effect of direct selection on preferences, and the
one addressed here, is to stabilize that equilibrium and inhibit
a runaway process. It is difficult to evaluate the importance
of this role in nature. As little as is known about what just
type of preference is most favored by direct selection, we
know nothing from natural populations about how strongly
selection favors the optimal preference. If preference phe-
notypes could be directly measured on females, then in prin-
ciple one could use existing methods to estimate the strength
of stabilizing selection acting on them (e.g., Lande and Ar-
nold 1983; Schluter 1988). That would be an important con-
tribution to our understanding of preference evolution and
sexual selection.

If preference genes experience direct selection because of
their pleiotropic effects on other traits, then they may be
selected in males as well as females. The models above as-
sume that preference genes are selected only in females, but
they can be easily modified to allow for selection on both
sexes. If preference genes are selected the same way in both
sexes, then runaway becomes even more difficult, as one
would expect. Quantitatively, the kp term in the Dp̄ equation

in Expression (2) would no longer be multiplied by 1/2, since
it would now be expressed in both sexes.

What is the ultimate fate of a population if a runaway is
triggered? The results developed here tell us about the local
stability of the equilibrium, but nothing about what will hap-
pen to it if it does run away. Several outcomes are possible.
One is that the population will arrive at a new equilibrium.
A second possibility is that the trait and preference will be-
come entrained in coevolutionary cycles (Iwasa and Pom-
iankowski 1995). It is impossible at this time to evaluate
either empirically or theoretically which outcome is likely to
be more common.
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